First evaluation of the climatological calibration algorithm in the realtime TMPA precipitation estimates over two basins at high and low latitudes
نویسندگان
چکیده
[1] The TRMM Multi-satellite Precipitation Analysis (TMPA) system underwent a crucial upgrade in early 2009 to include a climatological calibration algorithm (CCA) to its realtime product 3B42RT, and this algorithm will continue to be applied in the future Global Precipitation Measurement era constellation precipitation products. In this study, efforts are focused on the comparison and validation of the Version 6 3B42RT estimates before and after the climatological calibration is applied. The evaluation is accomplished using independent rain gauge networks located within the high-latitude Laohahe basin and the low-latitude Mishui basin, both in China. The analyses indicate the CCA can effectively reduce the systematic errors over the low-latitude Mishui basin but misrepresent the intensity distribution pattern of medium-high rain rates. This behavior could adversely affect TMPA’s hydrological applications, especially for extreme events (e.g., floods and landslides). Results also show that the CCA tends to perform slightly worse, in particular, during summer and winter, over the high-latitude Laohahe basin. This is possibly due to the simplified calibration-processing scheme in the CCA that directly applies the climatological calibrators developed within 40 latitude to the latitude belts of 40 N–50 N. Caution should therefore be exercised when using the calibrated 3B42RT for heavy rainfall-related flood forecasting (or landslide warning) over high-latitude regions, as the employment of the smooth-fill scheme in the CCA bias correction could homogenize the varying rainstorm characteristics. Finally, this study highlights that accurate detection and estimation of snow at high latitudes is still a challenging task for the future development of satellite precipitation retrievals.
منابع مشابه
Spatio-Temporal Analysis of the Accuracy of Tropical Multisatellite Precipitation Analysis 3B42 Precipitation Data in Mid-High Latitudes of China
Satellite-based precipitation data have contributed greatly to quantitatively forecasting precipitation, and provides a potential alternative source for precipitation data allowing researchers to better understand patterns of precipitation over ungauged basins. However, the absence of calibration satellite data creates considerable uncertainties for The Tropical Rainfall Measuring Mission (TRMM...
متن کاملError-Component Analysis of TRMM-Based Multi-Satellite Precipitation Estimates over Mainland China
The Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) products have been widely used, but their error and uncertainty characteristics over diverse climate regimes still need to be quantified. In this study, we focused on a systematic evaluation of TMPA’s error characteristics over mainland China, with an improved error-component analysis procedure. We perf...
متن کاملEvaluation of three high-resolution satellite precipitation estimates: Potential for monsoon monitoring over Pakistan
Multi-sensor precipitation datasets including two products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and estimates from Climate Prediction Center Morphing Technique (CMORPH) product were quantitatively evaluated to study the monsoon variability over Pakistan. Several statistical and graphical techniques are applied to illustrate the noncon...
متن کاملComparison of physical and statistical methods for estimating probable maximum precipitation in southwestern basins of Iran
The probable maximum precipitation (PMP) is the greatest depth of precipitation for a given duration that is physically possible over a given size storm area at a particular geographical location at a certain time of the year. In this study a physically based method was compared with a statistical procedure to calculate PMP in the southwest arid regions of Iran. In order to estimate PMP using a...
متن کاملHydrologic Evaluation of Six High Resolution Satellite Precipitation Products in Capturing Extreme Precipitation and Streamflow over a Medium-Sized Basin in China
Satellite precipitation products (SPPs) are critical data sources for hydrological prediction and extreme event monitoring, especially for ungauged basins. This study conducted a comprehensive hydrological evaluation of six mainstream SPPs (i.e., TMPA 3B42RT, CMORPH-RT, PERSIANN-RT, TMPA 3B42V7, CMORPH-CRT, and PERSIANN-CDR) over humid Xixian basin in central eastern China for a period of 14 ye...
متن کامل